Integrated Pest Management in Brassicas

NOFA MA Summer Conference
August 16, 2015

Susan B. Scheufele
UMass Extension
Vegetable Program
Presentation Overview

• Insect Pests
 – Flea Beetle
 – Caterpillars
 – Root Maggot

• Diseases
 – Alternaria Leaf Spot
 – Black Rot
 – Downy Mildew

• Conclusions
Flea Beetle: Damage

Shothole Feeding
- Non-waxy leaves
- Feeding on entire surface
- Common on *Brassica juncea* and *B. rapa* types (e.g. bok choy, arugula, mustards, Chinese cabbage etc.)

Marginal Feeding
- Occurs on waxy leaves
- Mainly on *Brassica oleracea* crops (e.g. cabbage, broccoli, kale etc.)
- These crops become more waxy when older
Flea Beetle: Life Cycle

- **Above ground, on foliage**
 - Overwinter as adult
 - Become active in early-May
 - Eggs, larvae, pupae in soil
 - New adults emerge late-July to August
 - 3rd peak possible in fall, September
 - Feeding intensity drops off in September, unless 3rd peak

- **Underground, near plant roots**
 - Eggs, larva, pupae in soil
 - New adults emerge late-July to August
 - 3rd peak possible in fall, September
 - Feeding intensity drops off in September, unless 3rd peak

Image by Caryn Andersen
Spring Emergence

- Become active in May through late-June to early-July
- Feed on Brassica weeds
- Rapidly find new crops
- Can destroy seedlings
Flea Beetle: Management

Crop Rotation:
Rotate spring crop as far as possible from last fall’s crop

Fall Brassicas Year 1
Overwintering site for beetles
WOODS, ROADS, HOUSES, FIELDS

Spring Brassicas Year 2
Flea Beetle: Management

- Overwintered adults
 - Hungry!!
- Early Brassicas in field 1
 - Hungry!!
- Late Brassicas in field 2
- 1st Generation Summer adults
 - Very hungry!!
Flea Beetle: Management

Control Brassica Weeds

Shepherd’s Purse, Yellow rocket, Wild mustard, etc.

- Four-petaled flower (white or yellow)
- Narrow seed pod—small, round seeds
- Rosette at base, vegetative
- Tall upright stem, reproductive
- Annual or biennial
Flea Beetle: Management

Use Row Covers to Exclude Beetles

• Bed prep: stale seedbed or cultivate just before seeding/planting
• Seal edges immediately after seeding/planting
• Seal ends as well as edges
• Remove for weeding as needed, and re-cover on the same day.
• In all trials, row cover gives the best control!
Flea Beetle: Management

Trap Cropping

- Keep it simple
- *B. rapa, B. juncea/mix*
 - Komatsuna, mustard
 - cheap seed
- Borders *OR* In-field strips (e.g. 1 row in a field)
- Main crop: less preferred – *B. oleracea, B. napa.*
- Scout weekly
- Spray the trap crop only -- ‘Concentrate & kill’
Flea Beetle: Management

<table>
<thead>
<tr>
<th>Most preferred</th>
<th>Least preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brassica rapa</td>
<td>B. oleracea</td>
</tr>
<tr>
<td>Bok choy, Komatsuna, Chinese Cabbage, Tatsoi</td>
<td>Cabbage, Broccoli, Kale, Collards</td>
</tr>
<tr>
<td>Eruca vesicaria</td>
<td></td>
</tr>
<tr>
<td>Arugula</td>
<td></td>
</tr>
<tr>
<td>Raphanus sativus</td>
<td></td>
</tr>
<tr>
<td>Radish, Daikon</td>
<td></td>
</tr>
<tr>
<td>B. juncea</td>
<td></td>
</tr>
<tr>
<td>Mustard</td>
<td></td>
</tr>
</tbody>
</table>

Based on 2004 experiment, UMass Research Farm and other sources
Full Bloom Farm trap crop study, 2013

- 2012 brassicas
- Kale & Collards 1
- Kale & Collards 2
- Bok Choy 1, 2, 3
- Border Trap Crop
- Border

[Map showing the farm layout with labeled crops and border trap crops]
Full Bloom Farm trap crop study, 2013

- **Trap crops:**
 - Brassica rapa, B. juncea border mix DS
 - ‘Sink’ crop (bok choy, napa) (2-4 A)

- **Main crop:**
 - kale, collard, lacinato, red Russian (8 A)

- **Thresholds:**
 - 1 to 2/plant, OR 10-25% damage

- **Product strategy:**
 - Pyganic for knockdown (rain coming)
 - Entrust for residual
 - mix if pressure is high
 - Use NuFilm adjuvant

+ successions of bok choy

<table>
<thead>
<tr>
<th>bok choy</th>
</tr>
</thead>
<tbody>
<tr>
<td>kale</td>
</tr>
<tr>
<td>lacinato</td>
</tr>
<tr>
<td>red russian</td>
</tr>
<tr>
<td>border mix</td>
</tr>
<tr>
<td>kale</td>
</tr>
<tr>
<td>lacinato</td>
</tr>
<tr>
<td>red russian</td>
</tr>
<tr>
<td>border mix</td>
</tr>
<tr>
<td>road</td>
</tr>
</tbody>
</table>

| last year's brassicas |
Full Bloom Farm trap crop study, 2013

2012 brassicas

Kale & Collards 1
Kale & Collards 2
Bok Choy 1, 2, 3

Border Trap Crop

Results (FB sprays): (June 1 to Aug 1)
3 sprays on border (early)
2 sprays on kales (1 garlic, 1 mix P&E)
10 sprays on bok choy (weekly)
Save 8*8 acres = 64 acres spray
Late-planted field of mixed Brassica crops
Red Fire Farm, Granby, MA

Rotated 1/3 mile from early Brassica field
Single row of Komatsuna around main crop of mixed *B. oleracea*
One block of Chinese Cabbage (*B. napa*) in center
Average Number of Feeding Holes
Red Fire Farm (field 2) 2006

Number of Feeding Holes

Date

17-Jul
24-Jul
27-Jul
31-Jul
9-Aug

border & napa, 7/18
border & napa, 7/26
w hole field 8/2 (for thrips)

Border
Main Crop
Napa

Border
Main Crop
Napa

0
10
20
30
40
50
60
Flea Beetle: Management

Push/Pull System

- Plant trap crop border or in-field strips
- Use a repellent like kaolin clay (Surround) on main crop
- Use insecticide to kill beetles on “pull” crop
- Reduce overall pesticide used, time spraying etc.
Organic (OMRI listed) insecticides for flea beetle

- **kaolin (Surround WPOG)**: use on transplants, seedlings and young plants.
- **pyrethrin (PyGanic EC5.0OG)**: quick knockdown only
- **spinosad (EntrustOG)**: some residual, most effective
- **azadiractin (Neemix 4.5)**: efficacy rated fair to poor
UMass flea beetle insecticide trials, 2003-2004
Caryn Andersen et al

Weekly sprays on Komatsuna greens (*Brassica rapa*)

Results:

• Spinosad had significantly less feeding damage than control
• Pyganic was no different from unsprayed control
• Row cover was the most effective treatment
Flea beetle on Cabbage
Abby Seaman, Cornell, 2011

- Crop: Cabbage “Farao F1”
- Planting date: 5/23
- Application dates: 5/31, 6/7, 6/14 (started as soon as flea beetles arrived)
- Evaluation date: 6/20

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate</th>
<th>Mean Damage Rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrust</td>
<td>2.5 oz/A</td>
<td>1.7 A</td>
</tr>
<tr>
<td>Pyganic 5.0</td>
<td>9 oz/A</td>
<td>2.7 B</td>
</tr>
<tr>
<td>Neemix 4.5</td>
<td>10 oz/A</td>
<td>2.5 B</td>
</tr>
<tr>
<td>Neemix + Pyganic</td>
<td>10 oz + 9 oz/A</td>
<td>2.7 B</td>
</tr>
<tr>
<td>Untreated control</td>
<td>--</td>
<td>2.5 B</td>
</tr>
</tbody>
</table>

*Rating 1-5 with 1 = no damage and 5 = plant almost dead
Flea Beetle: Management

Scouting

- Start in early May
- Look at most attractive crops first
- Field edges
- Count individuals and assess damage
- Consider crop stage, leafy vs heading, etc.
- Consider market tolerance
- Manage populations before they get out of control. Prevent buildup over seasons.
- Suggested thresholds: ~ 1 beetle/plant or 10-25% damage + adults present for greens
Sue Scheufele MS Mulch Study 2012

Randomized complete blocks design with four replications of 25’ x 5’

- Bare Ground Control
- Black Plastic Mulch
- Biodegradable Plastic Mulch (BioTelo)
- Wheat Straw Mulch (~2 tons/A)

Irrigated with trickle-line

Cover cropped field to keep down weeds and with-in field spore dispersal

- Disease Incidence
- Plant Height
- Total & Marketable Yields
Mulch Study: Results & Conclusions

- Mulching did have an effect on disease incidence
- Straw mulch significantly reduced disease incidence

![Graph showing disease incidence with control, plastic, BioTelo, and straw mulch categories.](image-url)
Mulch Study: Results & Conclusions

- All three mulches significantly increased plant height
- Plants grown under straw mulch grew the tallest
Mulch Study: Results & Conclusions

- None of the mulches significantly affected plant yield.

\(p = 0.1685 \)
Presentation Overview

• Insect Pests
 – Flea Beetle
 – Caterpillars
 – Root Maggot

• Diseases
 – Alternaria Leaf Spot
 – Black Rot
 – Downy Mildew

• Conclusions
Caterpillars: Review

Imported Cabbageworm (ICW)

Cross Striped Cabbageworm (CSCW)

Cabbage Looper (CL)

Diamondback Moth (DBM)
Caterpillars in Brassicas

- Slow, fuzzy
- Wriggly when touched
- Pointy ends and forked butt
- Moves by inching or “looping”
- Eggs laid in clusters—feeding frenzy!!

- Overwinters in field edge
- Active earliest, early spring-fall (4-5 generations/season)
- Migratory
- Timing varies each year, overlapping generations
- Migratory – arrive later-mid-July to August
- Overwinter in soil
- Adults emerge in late-spring
- Damage concentrated in head
- Damage spread across leaves
- Cause large ragged holes across leaves
- Damage is severe, skeletonize plants
Caterpillars: Management

Scout weekly starting in June

- Critical times: mid-July (ICW build up, looper arrives) or crop starting to head up
- Early feeding damage is easy to spot if you look under the leaves!
- Look underneath the leaves to find caterpillars when they are small
- Frass also helpful in finding small larvae

Check 25 plants across the field

Note # plants with 1 or more = infested

Use threshold for spray decisions

- Leafy greens:
 - 15% infested (one or more/plant)
- Heading crops:
 - 35% before heading,
 - 15% after heading
Caterpillars: Management

Organic Insecticides

- *Bacillus thuringiensis* toxin (e.g. Dipel, Xentari)
- Entrust (good on FB also)
- Pyganic (contact only—not recommended)
- Neem (use on small larvae)

Good coverage is important!!!!

Use a spreader/sticker
- e.g. NuFilm P
ICW is parasitized by a wasp, *Cotesia rubecula*, introduced in 1990 and now well established. You may see their small white cocoons on brassica leaves.

DBM eggs are parasitized by the ichneumonid wasp, *Diadegma insulare*, which occurs naturally in Eastern North America. *D. insulare* females require sources of nectar to be effective DBM parasitoids, so maintain wildflower stands near brassica fields.
The chalcid wasp, *Trichogramma brassicae*, will lay its eggs in many species of caterpillar, including all of the brassica pests (as well as non-target caterpillars).

Purchased wasps arrive as pre-parasitized caterpillar eggs glued to cards that can be distributed throughout the crop. Each card costs around $16-$20, and contains about 100,000 wasps, which is enough for up to one acre.

T. brassicae are more effective against moth species that lay their eggs in clusters, so those species may be good options if cross-striped cabbage worm has been a particular problem.
Presentation Overview

• Insect Pests
 – Flea Beetle
 – Caterpillars
 – Root Maggot

• Diseases
 – Alternaria Leaf Spot
 – Black Rot
 – Downy Mildew

• Conclusions
Cabbage Root Maggot: Damage

Symptoms include stunting, wilting, and discoloration of plants. These two pictures were taken the same day (left=untreated, right=verimark treated).
Symptoms include stunting, wilting, and discoloration of plants. These two pictures were taken the same day (left=untreated, right=verimark treated).
Cabbage Root Maggot: Damage

- Stunting
- Wilting
- Plant death
- Reduced Stands

Untreated plot (# 1 - left) Verimark treated plot (# 3 - right).
Cabbage Root Maggot: Damage

- Loss of secondary roots
- Elongation/callose of stem at hypocotyl
- Wounds allow entry of pathogens
Cabbage Root Maggot: Damage

- Root crops are also affected
- Larvae feed on root surface, causing tunnels and holes
- Secondary soft rot pathogens
- Unmarketable crop
- Worse in fall where CRM has built up over the season and turnips, radishes, and rutabagas are sizing up

http://ipm.illinois.edu/ifvn/contents.php?id=49
Cabbage Root Maggot: Life Cycle

Adult CRM Fly
Emerges in **early to mid-May** from pupa that survive in soil and leaf litter over the winter

Eggs
Are quite small but visible with the naked eye. Can be found **on plant stem** at or just below **soil line**

Larvae
Emerge from eggs in **late-May to early-June** and begin to feed on root and hypocotyl
Cabbage Root Maggot: Life Cycle

Spring Emergence

- Determined by time, weather
- Usually in early May

- **Monitoring**
 - Yellow sticky cards
 - Using biofixes (e.g. flowering of yellow rocket)

- **Predicting**
 - Pest models based on GDD
Cabbage Root Maggot: Management

Monitoring

- **Growing degree days (GDD):** Number of degrees above a base temperature per day, summed over time
 - Used to measure phenology traits of plants and insects
 - Base temperature is important
 - CRM models use a base of 40°F, colder than other insects
 - Peak flight of emerging adults occurs at ~450 GDD at base 40°F
Cabbage Root Maggot: Management

Cultural Practices

- **Crop rotation**: Overwinter right in field, rotate spring crop far from where fall crop was if CRM was present

- **Timing of Transplanting**: Avoid pest by delaying planting, OR put out larger transplants! They can take more damage

- **Row covers**: Exclude pest altogether, make sure you do not have any overwintering population though or you will just trap them in

- **Hilling and cultivation**: Throws soil up on stem, secondary roots may form above damage
Cabbage Root Maggot: Management

Organic Insecticides

- None labeled
- Entrust has shown some efficacy but is not labeled for this use
- We are pursuing a 2ee label for Entrust: fill out our survey!!
- UMass Extension is investigating other OMRI-approved products
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Active Ingredient</th>
<th>Rate</th>
<th>Application Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabbage (Farao) treatments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>De-Ionized Water</td>
<td>na</td>
<td>Banded over row after transplant</td>
</tr>
<tr>
<td>Lorsban</td>
<td>Chlorpyrifos</td>
<td>2.4 floz/A</td>
<td>Banded over row after transplant</td>
</tr>
<tr>
<td>Verimark</td>
<td>Cyantraniliprole</td>
<td>13 fl oz/A</td>
<td>Tray drench in GH</td>
</tr>
<tr>
<td>Coragen</td>
<td>Chlorantraniliprole</td>
<td>5 fl oz/A</td>
<td>Tray drench in GH</td>
</tr>
<tr>
<td>Entrust SC-A</td>
<td>Spinosad</td>
<td>10 fl oz/A</td>
<td>Tray drench pre-plant; Banded at planting; Banded 14 days later</td>
</tr>
<tr>
<td>Entrust SC-B</td>
<td>Spinsoad</td>
<td>10 fl oz/A</td>
<td>Banded at planting; Banded 14 days later</td>
</tr>
<tr>
<td>Treatment</td>
<td>Product</td>
<td>Active Ingredient</td>
<td>Rate/A</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Untreated</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>2</td>
<td>Lorsban</td>
<td>chlorpyrifos</td>
<td>2.75 fl oz</td>
</tr>
<tr>
<td>3</td>
<td>Verimark</td>
<td>cyantraniliprole</td>
<td>13 fl oz</td>
</tr>
<tr>
<td>4</td>
<td>Entrust SC</td>
<td>spinsad</td>
<td>10 fl oz</td>
</tr>
<tr>
<td>5</td>
<td>Entrust SC</td>
<td>spinosad</td>
<td>10 fl oz</td>
</tr>
<tr>
<td>6</td>
<td>Azadirect</td>
<td>azadiractin</td>
<td>2 pints/A</td>
</tr>
<tr>
<td>7</td>
<td>Azadirect</td>
<td>azadiractin</td>
<td>2 pints/A</td>
</tr>
<tr>
<td>8</td>
<td>Venerate XC</td>
<td>Burkholderia spp. strain A396</td>
<td>1% solution</td>
</tr>
<tr>
<td>9</td>
<td>Venerate XC</td>
<td>Burkholderia spp. strain A397</td>
<td>1% solution</td>
</tr>
</tbody>
</table>
UMass CRM Research: Methods

• Farao Cabbage
 – Early, small, fresh-eating variety

• Soil amended with 100-50-50 lbs N-P-K and 20 tons/acre manure-based compost

• Transplanted on May 2^{nd}: Two rows 18” apart, 12” in-row spacing

• RCBD with four replications of each treatment

• Adult CRM flies first observed May 5^{th}, 3 days after transplant
UMass CRM Research: Tray Drench

- One day before transplant
- 1.5-2 liters water
- Calculated material/plant
- Soaked 4 hours
UMass CRM Research: Soil Drench

- 200 gallons per acre
- Directed spray at soil/base of plant
- 4 – 6” band
- Applied one day after transplanting
UMass CRM Research: Sampling

Started Measurements at First Sign of Eggs (May 19th); Repeated Weekly

Plot Vigor (0-100%): Measured overall vigor and stand counts of each replicate plot.

Plant Vigor (0-100%): Measured vigor of ten randomly selected plants per plot.

Destructive Sampling of 10 Plants per Plot
- Measured root damage on scale of 1-5
- Counted # of larvae present
UMass CRM Research: Vigor Rating (0-100%)

Assessment Incorporated:

- Plant Stand (ie. # plants killed by CRM)
- Plant size/stunting
- Plant color
- Wilting
- Flea beetle damage
- Discoloration
UMass CRM Research: Damage Scale

1 = no damage/strong root development/lots of secondary roots
2 = Slight to very little root damage/still good secondary roots
3 = Moderate to severe root damage/not a lot of secondary roots
4 = Highly damaged/no secondary roots
5 = Dead
UMass CRM Research: Plot Vigor 2014

Vigor (%)

- Untreated
- Lorsban
- Verimark
- Coragen
- Entrust SC - A
- Entrust SC - B

p = 0.0004 p < 0.0001

5/19 5/27 6/2

50 60 70 80 90 100
UMass CRM Research: Root Damage 2014

Mean Damage on Scale 1-4

- Untreated
- Lorsban
- Verimark
- Coragen
- Entrust - A
- Entrust - B

p < 0.0001
UMass CRM Research: Cabbage Yield 2014
UMass CRM Research: Head Size 2014

Mean Head Diameter (inches)

- Untreated
- Lorsban
- Verimark
- Coragen
- Entrust SC - A
- Entrust SC - B

p < 0.0001
Cabbage Vigor (%) and Root Damage (0-4) at Final Timepoint

- **Untreated**
- **Lorsban**
- **Verimark**
- **Entrust-A**
- **Entrust-B**
- **Azatin O-A**
- **Azatin O-B**
- **Venerate-A**
- **Venerate-B**

Legend:
- **Vigor**
- **Root Damage**

Data points are marked with letters indicating significant differences.
UMass CRM Research: Head Size 201

Cabbage Harvest 2015

Average Head Diameter (in)

Average Head Weight (lbs)

- Untreated
- Lorsban
- Verimark
- Entrust SC-A
- Entrust SC-B
- Azatin O-A
- Azatin O-B
- Venerate XC-A
- Venerate XC-B

- Weight (lbs)
- Head Diameter (in)

Legend: different letters indicate significant differences at p < 0.05.
Entrust – A worked as well as Lorsban when transplants were drenched before planting

- We will continue to study Entrust and work with Dow to get a 2ee label for MA

Not currently labeled in New England

None of the other OMRI-approved materials tested showed any efficacy
Cabbage Root Maggot: Summary

- **Crop rotation**: Overwinter right in field, rotate spring crop far from where fall crop was if CRM was present.

- **Timing of Transplanting**: delay planting, OR put out larger transplants!

- **Row covers**: Exclude pest altogether, trap them inside covers!

- **Monitoring**: Use the NEWA model to know when emergence and peak flight will occur. Use sticky cards in field.

- **Insecticides**: Fill out our Entrust Label Expansion Survey!!!
Insect Questions?
Presentation Overview

• Insect Pests
 – Flea Beetle
 – Caterpillars
 – Root Maggot

• Diseases
 – Alternaria Leaf Spot
 – Black Rot
 – Downy Mildew

• Conclusions
Alternaria Leaf Spot: Symptoms

- Small black dots enlarge to form target-like dark brown spots with “shot-hole” centers.
- Leaf chlorosis and necrosis
Alternaria Leaf Spot: Symptoms

- All plant parts – stems, foliage, seeds, florets, heads
- All *Brassica* crops are affected
- Symptoms and impact on marketability may differ
Alternaria Leaf Spot: Symptoms

- Spreads in storage
Alternaria Leaf Spot: Disease Cycle

- Primary Inoculum: infected seed or transplants, crop debris in soil (survives 2-3 years), or from nearby fields by wind
- Occurs regularly each year
- Thrives at 59-77°F but survives and grows at very wide temperature range
- Common in fall
Alternaria leaf spot: Disease Cycle

- Spores produced continually throughout season
- Spore production requires 12+ hours of 90% RH
- Spread by wind, rain, splash and by flea beetles

Spores of *Alternaria brassicicola*
S. Seemadua http://www.padil.gov.au/thai-bio/Pest/Main/140396/30061
Alternaria leaf spot: Management

Use Cultural Practices!!

- Use clean seed-hot water treatment
- 3 year crop rotations – Fall/Spring
- Residue management -- stalks last 2+ years
- WIDER SPACING!!
- Control *Brassica* weed hosts
- Control Flea beetles!!

Sporulating lesions on overwintered Brussels sprouts

Dillard et al, 1998
Alternaria leaf spot: Management

Organic Fungicides
- None have shown efficacy
- Studies ongoing at UMass
Presentation Overview

- Insect Pests
 - Flea Beetle
 - Caterpillars
 - Root Maggot

- Diseases
 - Alternaria Leaf Spot
 - Black Rot
 - Downy Mildew

- Conclusions
Black Rot: Symptoms

- Characteristic V-shaped lesions form on leaf margins
- Caused by bacterium *Xanthomonas campestris*
- Bacteria enter plant through leaf hydathodes in guttation droplets
- Veins within lesions turn black, as vessels are clogged with Xantham gum
Black Rot: Disease Cycle

- **Primary Inoculum**: infected seed/seedlings or infected crop residue in soil (2-3 years)

- **Systemic infections** at the seedling stage cause lower leaves to yellow and drop and the plant eventually will collapse

- **Thrives at 75-95°F** and will not be spread or infect below 50°F or during dry weather.

- Also spread by workers/equipment and by insects like flea beetles.

- Bacterial cells are spread by water e.g. from rainsplash, surface runoff, aerosols in humid air.
Start with Clean Seed
• Bacteria are often seed-borne
• Major source of primary inoculum
• Greenhouse environment very conducive for bacterial growth and spread

Residue Management
• Prevent overwintering in field
Black Rot: Management

Reduce Humidity/Water
- No overhead irrigation
- Improve soil drainage
- Increase plant spacing
- Remove weeds from within row

Sanitation
- Bleach/Greenshield tools and equipment
- Rogue out infected plants
- Don’t work in wet fields
- Work in unaffected fields first to prevent spread
- Separate successions or locate younger plantings and direct-seeded fields upwind from older plantings

Control flea beetles!!

Control weed hosts
- E.g. mustards, Virginia pepperweed, shepher’d purse, wild radish

Dillard et al, 1998
Black Rot: Management

Organic Bactericides
- Coppers eg. Cueva, Champ
- Lots of others labeled
Presentation Overview

• Insect Pests
 – Flea Beetle
 – Caterpillars
 – Root Maggot

• Diseases
 – Alternaria Leaf Spot
 – Black Rot
 – Downy Mildew

• Conclusions
Brassica Downy Mildew: Symptoms

- Yellow spots on seedlings
- Gray – black flecking within lesion
Brassica Downy Mildew: Symptoms

- Poor stand
- Yellowing cotyledons
- Yellowing cotyledons
- Tan-brown-gray flecking
- Dark spots/growth on leaf underside
Brassica Downy Mildew: Symptoms

- Diffuse yellowing of foliage, may be vein-delimited
- Dark sporulation may be seen on leaf undersides
- As lesions age they become tan, papery, necrotic
Brassica Downy Mildew: Symptoms

- All brassica crops affected (and many weeds!)
- Here a rutabaga crop is 100% affected and had to be plowed in...seed lot infested!!
Brassica Downy Mildew: Symptoms

All crops affected:
- On cauliflower, curds turn brown (like with Alternaria)
- On broccoli, gray streaks form below the beads
- Also affects taproots of turnip and radish, black blotches on surface and an internal discoloration.
Brassica Downy Mildew: Disease Cycle

- Caused by an oomycete (sporangia at right)
- Can overwinter in crop debris, unlike many DM’s
- Can also be seed-borne
- Infection can occur at any growth stage.
- Plants may be infected early and not show any symptoms until conditions are favorable, often late-season/fall
- Cool temperatures of 50°F– 59°F and prolonged periods of leaf wetness, dew or fog are required.
Brassica Downy Mildew: Management

Start with Clean Seed!
- Ask your seed supplier
- Hot water seed treatment
- Fungicide seed treatments??

Control brassica weeds!

Reduce humidity by:
- Increasing spacing
- Good weed control
- Don’t use overhead irrigation

Be diligent if doing brassicas over the winter—a conducive environment, living bridge!

Break down crop debris quickly!
Conclusions

Brassica IPM

• **Rotate**: 2 years long, as far apart in season as possible, separate fall/spring (FB, CRM, ALS, BR)

• **Hot water treat seeds** to eradicate common pathogens (BR, ALS, BDM)

• **Control brassica weeds**: Shepherd’s purse, rocket, radish, mustards, pepperweed etc.

• **Insects**:
 • Don’t let populations get out of control, either in 1 season or over many.
 • Scout weekly for FB, caterpillars, disease symptoms

• **Increase plant spacing**: healthier crops, less disease, higher yields

• **Manage Residues**: Mow, disc, plow fields as soon as possible to start residue breaking down immediately—can last 2+ years in soil.
Acknowledgements

Thanks to my colleagues at UMass Extension Vegetable Program: Ruth Hazzard, Katie Campbell-Nelson, and Lisa McKeag. Research discussed here was funded by donations from the New England Vegetable & Berry Growers’ Association (NEV&BGA), DuPont, Syngenta, and Bayer CropScience, and by grant funding from USDA-NIFA, with field assistance from Neal Woodard and Zack Zenk.
Resources

New England Vegetable Management Guide
http://nevegetable.org/
• Answers to all questions relating to crop production including chemical recommendations for every crop/pest

Vegetable Notes Newsletter
https://ag.umass.edu/vegetable/newsletters
• Weekly pest alerts warn you of pest arrival or outbreaks, and articles on crop production and farm issues

Production Guide for Organic Cole Crops
http://nysipm.cornell.edu/organic_guide/cole_crops.pdf
• Another useful guide specifically for organic brassicas from NYSIPM

Network for Environmental and Weather Applications (NEWA)
http://newa.cornell.edu/
• Pest models/forecasts for veg crops including brassicas, onions, potato and tomato
Questions?